Factors Shaping Young and Mature Bacterial Biofilm Communities in Two Drinking Water Distribution Networks

Author:

Cheng DanORCID,Leifels MatsORCID,Miccolis Carlo,Wuertz StefanORCID,Thompson Janelle R.ORCID,Szewzyk UlrichORCID,Whittle Andrew J.

Abstract

AbstractThe presence of biofilms in drinking water distribution systems (DWDS) can affect both water quality and system integrity; yet these systems remain poorly studied due to lack of accessibility. We established two independent full-scale DWDS Testbeds (A and B) on two different campuses situated in a tropical urban environment and equipped them with online sensors. Testbed B experienced higher levels of monochloramine and lower water age than Testbed A within the campus. Based on long amplicon-sequencing of bacterial 16S rRNA genes extracted from the mature biofilms (MPB) growing on pipes and young biofilms (YSB) growing on the sensors, a core community was identified in the two testbeds. The relative abundances of operational taxonomic units at the family level, including Mycobacteriaceae, Methylobacteriaceae, Rhodospirillaceae, Nitrosomonadaceae, and Moraxellaceae, were consistent for MPB and YSB on each campus. The MPB community was found to be influenced by conductivity, sample age, and pipe diameter as determined by both canonical correlation analysis and fuzzy set ordination. MPB displayed higher α-diversity based on Hill numbers than YSB; in general, second order Hill numbers correlated positively with conductivity and sample age, but negatively with ORP and nitrite. Pseudomonas spp. together with Bacillus spp. likely initiated biofilm formation of YSB on Testbed A under conditions of reduced monochloramine and high water age. Significant levels of orthophosphate were detected in YSB samples at two stations and associated with higher levels of stagnation based on long-term differential turbidity measurement (DTM). Orthophosphate and DTM may act as indicators of the biofilm growth potential within DWDS.Highlights- Established two testbeds to study biofilms in full-scale distribution system- Biofilms on pipes and sensors had core community- Temporal effect and higher α-diversity for biofilms on pipes- Water chemistry was related to biofilm community differencesGraphical Abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3