Encoding innate ability through a genomic bottleneck

Author:

Koulakov Alexei,Shuvaev Sergey,Zador Anthony

Abstract

AbstractAnimals are born with extensive innate behavioral capabilities, which arise from neural circuits encoded in the genome. However, the information capacity of the genome is orders of magnitude smaller than that needed to specify the connectivity of an arbitrary brain circuit, indicating that the rules encoding circuit formation must fit through a “genomic bottleneck” as they pass from one generation to the next. Here we formulate the problem of innate behavioral capacity in the context of artificial neural networks in terms of lossy compression of the weight matrix. We find that several standard network architectures can be compressed by several orders of magnitude, yielding pre-training performance that can approach that of the fully-trained network. Interestingly, for complex but not for simple test problems, the genomic bottleneck algorithm also captures essential features of the circuit, leading to enhanced transfer learning to novel data sets. Our results suggest that compressing a neural circuit through the genomic bottleneck serves as a regularizer, enabling evolution to select simple circuits that can be readily adapted to important real-world tasks. The genomic bottleneck also suggests how innate priors can complement conventional approaches to learning in designing algorithms for artificial intelligence.

Publisher

Cold Spring Harbor Laboratory

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3