Author:
Gomes David Boaventura,Henriques Lourenço Ana Filipa,Tomasina Clarissa,Chömpff Bryan,Liu Hong,Bouvy Nicole,Camarero-Espinosa Sandra,Moroni Lorenzo
Abstract
AbstractHuman mesenchymal stem/stromal cells (hMSCs) present a great opportunity for tissue regeneration due to their multipotent capacity. However, when cultured on 2D tissue culture polystyrene (TCPS) plates, hMSCs lose their differentiation capacity and clinical potential. It has been reported that cells need a more physiologically relevant micro-environment that allows them to maintain their phenotype. Here, we have developed a 3D alginate hydrogel functionalized with the Arg-Gly-Asp (RGD) sequence and having low mechanical stiffness that mimics the mechanical properties (>5 KPa) of bone marrow. hMSCs cultured in these hydrogels appeared to be halted in G1 phase of the cell cycle and to be non-proliferative, as shown by flow cytometry and 5-Ethynyl-2’-deoxyuridine (EdU) staining, respectively. Their quiescent state was characterized by an upregulation of enhancer of zeste homolog 1 (EZH1) at the gene level, forkhead box O3 (FoxO3) and cyclin-dependent kinase inhibitor 1B (p27) at the gene and protein levels compared to hMSCs grown in 2D TCPS. Comparative studies in 3D hydrogels of alginate-RGD presenting higher concentration of the peptide or in collagen hydrogels revealed that independently of the concentration of RGD or the chemistry of the adhesion motives, hMSCs cultured in 3D presented a similar phenotype.This quiescent phenotype was exclusive of 3D cultures. In 2D, even when cells were starved of fetal bovine serum (FBS) and became also non-proliferative, the expression of these markers was not observed. We propose that this difference may be the result of mammalian target of rapamycin complex 1 (mTORC1) being downregulated in hMSCs cultured in 3D hydrogels, which induces cells to be in “deep” quiescence and be kept alive ex vivo for a long period of time. Our results represent a step forward towards understanding hMSCs quiescence and its molecular pathways, providing more insight for hMSCs cell therapies.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献