Fifty generations of amitosis: tracing asymmetric allele segregation in polyploid cells with single-cell DNA sequencing

Author:

Vitali ValerioORCID,Rothering RebeccaORCID,Catania FrancescoORCID

Abstract

AbstractAmitosis is a widespread form of unbalanced nuclear division whose biomedical and evolutionary significance remain unclear. Traditionally, insights into the genetics of amitosis are acquired by assessing the rate of phenotypic assortment. The phenotypic diversification of heterozygous clones during successive cell divisions reveals the random segregation of alleles to daughter nuclei. Though powerful, this experimental approach relies on the availability of phenotypic markers. Here, we present an approach that overcomes the requirement for phenotypic assortment. Leveraging Paramecium tetraurelia, a unicellular eukaryote with nuclear dimorphism and a highly polyploid somatic nucleus, we use single-cell whole-genome sequencing to track the assortment of developmentally acquired somatic DNA variants. Accounting for genome representation biases, we measure the effect of amitosis on allele segregation across the first ∼50 amitotic divisions post self-fertilization and compare our empirical findings with theoretical predictions estimated via mathematical modeling. In line with our simulations, we show that amitosis in P. tetraurelia produces measurable but modest levels of somatic assortment. In forgoing the requirement for phenotypic assortment and employing developmental, environmentally induced somatic variation as molecular markers, our work provides a new powerful approach to investigate the consequences of amitosis in polyploid cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3