Paternal obesity results in placental hypoxia and sex-specific impairments in placental vascularization and offspring metabolic function

Author:

Jazwiec Patrycja A.ORCID,Patterson Violet S.ORCID,Ribeiro Tatiane A.,Yeo Erica,Kennedy Katherine M.ORCID,Mathias Paulo C.F.ORCID,Petrik Jim J.,Sloboda Deborah M.ORCID

Abstract

ABSTRACTPaternal obesity predisposes offspring to metabolic dysfunction, but the underlying mechanisms remain unclear. We investigated whether paternal obesity-induced offspring metabolic dysfunction is associated with placental endoplasmic reticulum (ER) stress and impaired vascular development. We determined whether offspring glucose intolerance is fueled by ER stress-mediated changes in fetal hepatic development. Furthermore, we also determined whether paternal obesity may indirectly affect in utero development by disrupting maternal metabolic adaptations to pregnancy. Male mice fed a standard chow diet (CON; 17% kcal fat) or high fat diet (PHF; 60% kcal fat) for 8-10 weeks were time-mated with control female mice to generate pregnancies and offspring. Glucose tolerance in pregnant females was evaluated at mid-gestation (embryonic day (E) 14.5) and term gestation (E18.5). At E14.5 and E18.5, fetal liver and placentae were collected, and markers of hypoxia, angiogenesis, endocrine function, and macronutrient transport, and unfolded protein response (UPR) regulators were evaluated to assess ER stress. Young adult offspring glucose tolerance and metabolic parameters were assessed at ∼60 days of age. Paternal obesity did not alter maternal glucose tolerance or placental lactogen in pregnancy but did induce placental hypoxia, ER stress, and altered placental angiogenesis. This effect was most pronounced in placentae associated with female fetuses. Consistent with this, paternal obesity also activated the ATF6 and PERK branches of the UPR in fetal liver and altered hepatic expression of gluconeogenic factors at E18.5. Adult offspring of obese fathers showed glucose intolerance and impaired whole-body energy metabolism, particularly in female offspring. Thus, paternal obesity programs sex-specific adverse placental structural and functional adaptations and alters fetal hepatic development via ER stress-induced pathways. These changes likely underpin metabolic deficits in adult offspring.Summary SentencePaternal obesity alters placental vascular structures and is associated with sex-specific compromises in glucose tolerance and metabolism in young offspring

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3