DIP: Natural History Model for Major Depression with Incidence and Prevalence

Author:

Yildirim MelikeORCID,Gaynes Bradley N,Keskinocak PinarORCID,Pence Brian W,Swann JulieORCID

Abstract

AbstractBackgroundMajor depression is a treatable disease, and untreated depression can lead to serious health complications. Therefore, prevention, early identification, and treatment efforts are essential. Natural history models can be utilized to make informed decisions about interventions and treatments of major depression.MethodsWe propose a natural history model of major depression. We use steady-state analysis to study the discrete-time Markov chain model. For this purpose, we solved differential equations and tested the parameter and transition probabilities empirically.ResultsWe showed that bias in parameters might collectively cause a significant mismatch in a model. If incidence is correct, then lifetime prevalence is 33.2% for females and 20.5% for males, which is higher than reported values. If prevalence is correct, then incidence is .0008 for females and .00065 for males, which is lower than reported values. The model can achieve feasibility if incidence is at low levels and recall bias of the lifetime prevalence is quantified to be 31.9% for females and 16.3% for males.LimitationsModel is limited to major depression, and patients who have other types of depression are assumed healthy. We assume that transition probabilities (except incidence rates) are correct.ConclusionWe constructed a preliminary model for the natural history of major depression. We determine the lifetime prevalence are underestimated. We conclude that the average incidence rates may be underestimated for males. Our findings mathematically prove the arguments around the potential discordance between reported incidence and lifetime prevalence rates.

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

1. Recall of depressive episode 25 years previously

2. United States Life Tables, 2014;Natl Vital Stat Rep,2017

3. Bland, R.C. , 1992. Psychiatric Disorders in America: The Epidemiologic Catchment Area Study, J Psychiatry Neurosci, pp. 34–36.

4. Estimating health program outcomes using a Markov equilibrium analysis of disease development;Am J Public Health,1971

5. Comprehensive Meta-Analysis of Excess Mortality in Depression in the General Community Versus Patients With Specific Illnesses

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3