Towards a More General Understanding of the Algorithmic Utility of Recurrent Connections

Author:

Larsen Brett W.ORCID,Druckmann Shaul

Abstract

AbstractLateral and recurrent connections are ubiquitous in biological neural circuits. Yet while the strong computational abilities of feedforward networks have been extensively studied, our understanding of the role and advantages of recurrent computations that might explain their prevalence remains an important open challenge. Foundational studies by Minsky and Roelfsema argued that computations that require propagation of global information for local computation to take place would likely particularly benefit from the sequential, parallel nature of processing in recurrent networks. Such “tag propagation” algorithms perform repeated, local propagation of information and were originally introduced in the context of detecting connectedness, a task that is challenging for feedforward networks. Here, we advance the understanding of the utility of lateral and recurrent computation by first performing a large-scale empirical study of neural architectures for the computation of connectedness to explore feedforward solutions more fully and establish robustly the importance of recurrent architectures. In addition, we highlight a tradeoff between computation time and performance and demonstrate hybrid feedforward/recurrent models that perform well even in the presence of varying computational time limitations. We then generalize tag propagation architectures to multiple, interacting propagating tags, and demonstrate that these are efficient computational substrates for more general computations of connectedness by introducing and solving an abstracted biologically inspired decision-making task. Our work thus clarifies and expands the set of computational tasks that can be solved efficiently by recurrent computation, yielding hypotheses for structure in population activity that may be present in such tasks.Author SummaryIn striking contrast to the majority of current-day artificial neural network research which primarily uses feedforward architectures, biological brains make extensive use of lateral and recurrent connections, raising the possibility that this difference makes a fundamental contribution to the gap in computational power between real neural circuits and artificial neural networks. Thus, despite the challenge of making effective comparisons between different network architectures, developing a more detailed understanding of the computational role played by such connections is a pressing need. Here, we leverage the computational capabilities of large-scale machine learning to robustly explore how differences in architectures affect a network’s ability to learn tasks that require propagation of global information. We first focus on the task of determining whether two pixels are connected in an image which has an elegant and efficient recurrent solution: propagate a connected label or tag along paths. Inspired by this solution, we show that it can be generalized in many ways, including propagating multiple tags at once and changing the computation performed on the result of the propagation. Strikingly, this simple expansion of the tag propagation network is sufficient to solve a crucial abstraction to temporal connectedness at the core of many decision-making problems, which we illustrate for a an abstracted competitive foraging task Our results shed light on the set of computational tasks that can be solved efficiently by recurrent computation and how these solutions may relate to the structure of neural activity.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Minsky M , Papert SA . Perceptrons: An introduction to computational geometry: MIT press; 2017.

2. Approximation by superpositions of a sigmoidal function

3. Networks and the best approximation property

4. Approximation capabilities of multilayer feedforward networks

5. Lu Z , Pu H , Wang F , Hu Z , Wang L , editors. The expressive power of neural networks: A view from the width. Advances in neural information processing systems; 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3