Consensus tetratricopeptide repeat proteins are complex superhelical nanosprings

Author:

Synakewicz Marie,Eapen Rohan S.,Perez-Riba Albert,Bauer Daniela,Weißl Andreas,Fischer Gerhard,Hyvönen Marko,Rief Matthias,Itzhaki Laura S.ORCID,Stigler Johannes

Abstract

AbstractTandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs) — superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between folded and unfolded conformations. We rationalise the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the centre towards both termini simultaneously. Strikingly, we also directly observe the protein’s superhelical tertiary structure in the force signal. Using protein engineering, crystallography and single-molecule experiments, we show how the superhelical geometry can be altered by carefully placed amino-acid substitutions and examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.Significance statementRepetition of biological building blocks is crucial to modulating and diversifying structure and function of biomolecules across all organisms. In tandem-repeat proteins, the linear arrangement of small structural motifs leads to the formation of striking supramolecular shapes. Using a combination of single-molecule biophysical techniques and modelling approaches, we dissect the spring-like nature of a designed repeat protein and demonstrate how its shape and mechanics can be manipulated by design. These novel insights into the biomechanical and biochemical characteristics of this protein class give us a methodological basis from which to understand the biological functions of repeat proteins and to exploit them in nanotechnology and biomedicine.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3