Revisiting the source of wilt symptoms: X-ray microcomputed tomography provides direct evidence that Ralstonia biomass clogs xylem vessels

Author:

Ingel Brian,Caldwell Denise,Duong Fiona,Parkinson Dilworth Y.,McCulloh Katherine A.,Iyer-Pascuzzi Anjali S.,McElrone Andrew J.,Lowe-Power Tiffany M.ORCID

Abstract

AbstractPlant pathogenic Ralstonia cause wilt diseases by colonizing xylem vessels and disrupting water transport. Due to the abundance of Ralstonia cells in vessels, the dogma is that bacterial biomass clogs vessels and reduces the flow of xylem sap. However, the physiological mechanism of xylem disruption during bacterial wilt disease is untested. Using a tomato and Ralstonia pseudosolanacearum GMI1000 model, we visualized and quantified the spatiotemporal dynamics of xylem disruption during bacterial wilt disease. First, we measured stomatal conductance of leaflets on mock-inoculated and wilt-symptomatic plants. Wilted leaflets had reduced stomatal conductance, as did turgid leaflets located on the same petiole as wilted leaflets. Next, we used X-ray microcomputed tomography (X-ray microCT) and light microscopy to differentiate between mechanisms of xylem disruption: blockage by bacterial biomass, blockage by vascular tyloses, or sap displacement by gas embolisms. We imaged stems on plants with intact roots and leaves to quantify embolized vessels. Embolized vessels were rare, but there was a slight trend of increased vessel embolisms in infected plants with low bacterial population sizes. To test the hypothesis that vessels are clogged during bacterial wilt, we imaged excised stems after allowing the sap to evaporate during a brief dehydration. Most xylem vessels in mock-infected plants emptied their contents after excision, but non-conductive clogged vessels were abundant in infected plants by 2 days post infection. At wilt onset when bacterial populations exceeded 5×108 cfu/g stem tissue, approximately half of the xylem vessels were clogged with electron-dense bacterial biomass. We found no evidence of tyloses in the X-ray microCT reconstructions or light microscopy on the preserved stems. Bacterial blockage of vessels appears to be the principal cause of vascular disruption during Ralstonia wilt.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3