Image- vs. histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images

Author:

Tustison Nicholas J.ORCID,Altes Talissa A.,Qing KunORCID,He MuORCID,Miller G. Wilson,Avants Brian B.ORCID,Shim Yun M.ORCID,Gee James C.,Mugler John P.,Mata Jaime F.

Abstract

AbstractMagnetic resonance imaging (MRI) using hyperpolarized gases has made possible the novel visualization of airspaces in the human lung, which has advanced research into the growth, development, and pathologies of the pulmonary system. In conjunction with the innovations associated with image acquisition, multiple image analysis strategies have been proposed and refined for the quantification of such lung imaging with much research effort devoted to semantic segmentation, or voxelwise classification, into clinically oriented categories based on ventilation levels. Given the functional nature of these images and the consequent sophistication of the segmentation task, many of these algorithmic approaches reduce the complex spatial image information to intensity-only considerations, which can be contextualized in terms of the intensity histogram. Although facilitating computational processing, this simplifying transformation results in the loss of important spatial cues for identifying salient image features, such as ventilation defects (a well-studied correlate of lung pathophysiology), as spatial objects. In this work, we discuss the interrelatedness of the most common approaches for histogram-based optimization of hyperpolarized gas lung imaging segmentation and demonstrate how certain assumptions lead to suboptimal performance, particularly in terms of measurement precision. In contrast, we illustrate how a convolutional neural network is optimized (i.e., trained) directly within the image domain to leverage spatial information. This image-based optimization mitigates the problematic issues associated with histogram-based approaches and suggests a preferred future research direction. Importantly, we provide the entire processing and evaluation framework, including the newly reported deep learning functionality, as open-source through the well-known Advanced Normalization Tools ecosystem.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3