Characterization of Chronotypes Using the Symbolic Aggregate apprXimation (SAX) on Actigraphy Data

Author:

Luo Wen,Androulakis Ioannis P.ORCID

Abstract

AbstractIn this study, we discuss an efficient approach to characterizing chronotypes using Symbolic Aggregate approXimation (SAX) on actigraphy data. Actigraphy, a non-invasive monitoring of human rest/activity cycles, provides valuable insights into sleep-wake behaviors and circadian rhythms. However, the high dimensionality of actigraphy data poses significant challenges in storage, processing, and analysis. To address these challenges, we applied the SAX algorithm to transform continuous time-series actigraphy data into a symbolic representation, enabling dimensionality reduction while preserving essential patterns. We analyzed actigraphy data from the National Health and Nutrition Examination Survey (NHANES) database, covering over 10,000 individuals, and used unsupervised clustering to identify distinct chronotype patterns. The SAX transformation facilitated the application of machine learning techniques, revealing five chronotype clusters characterized by differences in activity onset, resolution, and intensity. Age distribution analysis showed biases towards specific age groups within the clusters, highlighting the relationship between age and chronotype. Key findings include age-related Chronotype variations with younger individuals exhibiting delayed chronotypes with significant differences in sleep onset (SOT) and wake time (WT) compared to older adults, suggesting a phase delay in sleep patterns as age decreases and activity transition dynamics where clusters showed distinct patterns in winding up and winding down periods, providing insights into the dynamics of activity transitions. This study demonstrates the efficiency and effectiveness of SAX in processing large-scale actigraphy data, enabling robust chronotype characterization that can inform personalized healthcare and public health initiatives. Further exploration of SAX integration with other biometric measures could deepen our understanding of human circadian biology and its impact on health and behavior.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3