Epidermal Growth Factor Receptor Signaling Governs the Host Inflammatory Response to Invasive Aspergillosis

Author:

Liu HongORCID,Lin JianfengORCID,Phan Quynh T.,Bruno Vincent M.ORCID,Filler Scott G.ORCID

Abstract

AbstractThe epidermal growth factor receptor (EGFR) has been identified as an epithelial cell receptor for Mucorales fungi andCandida albicans. Blocking EGFR with small molecule inhibitors reduces disease severity in mouse models of mucormycosis and oropharyngeal candidiasis. In contrast, cases of invasive aspergillosis have been reported in cancer patients who were treated with EGFR inhibitors, suggesting that EGFR signaling may play a protective role in the host defense against this infection. Here, we analyzed transcriptomic data from the lungs of mice with invasive aspergillosis and found evidence thatAspergillus fumigatusinfection activates multiple genes that are predicted to function in the EGFR signaling pathway. We also found thatA. fumigatusinfection activates EGFR in both a human small airway epithelial (HSAE) cell line and in the lungs of immunosuppressed mice. EGFR signaling in HSAE cells is required for maximal endocytosis ofA. fumigatusand for fungal-induced proinflammatory cytokine and chemokine production. In a corticosteroid immunosuppressed mouse model of invasive pulmonary aspergillosis, inhibition of EGFR with gefitinib decreased whole lung chemokine levels and reduced accumulation of phagocytes in the lung, leading to a decrease in fungal killing, an increase in pulmonary fungal burden, and accelerated mortality. Thus, EGFR signaling is required for pulmonary epithelial cells to orchestrate the host innate immune defense against invasive aspergillosis in immunosuppressed hosts.ImportanceWhenA. fumigatusinfects the lungs, it invades epithelial cells that line the airways. During this process, the fungus interacts with epithelial cell receptors. This interaction stimulates epithelial cells to endocytose the fungus. It also induces these cells to secret proinflammatory cytokines and chemokines that recruit phagocytes to the site of infection where they can kill the fungus. Here, we show that in small airway epithelial cells, the epidermal growth factor receptor (EGFR) acts a sensor forA. fumigatusthat triggers the production of chemokines in response to fungal infection. In corticosteroid-immunosuppressed mice, blocking EGFR with the kinase inhibitor, gefitinib reduces chemokine production in the lungs. This leads to decreased accumulation of neutrophils and dendritic cell in the lungs, reducedA. fumigatuskilling, and increased mortality. These results provide a potential explanation as to why some cancer patients who are treated with EGFR inhibitors develop invasive aspergillosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3