Abstract
AbstractThe assembly and operation of neural circuits in the brain rely on the coordination and balance of excitatory and inhibitory activities. Inhibitory synapses are key regulators of the functional balance of neural circuits. However, due to the diversity of inhibitory presynaptic neurons, the complex composition of postsynaptic receptor subunits and the lack of typical postsynaptic dense structure, there are relatively few studies on the regulatory mechanisms for inhibitory synaptic structure and function, and insufficient understanding of the cellular and molecular abnormalities of inhibitory synapses in neurological and neuropsychiatric disorders. Here, we report a crucial role for endophilin A1 in inhibitory synapses. We show that endophilin A1 directly interacts with the inhibitory postsynaptic scaffold protein gephyrin in excitatory neurons, and promotes organization of the inhibitory postsynaptic density and synaptic recruitment/stabilization of the γ-aminobutyric acid type A receptors via its plasma membrane association and actin polymerization promoting activities. Loss of endophilin A1 by gene knockout in mouse hippocampal CA1 pyramidal cells weakens inhibitory synaptic transmission and causes imbalance in the excitatory/inhibitory function of neural circuits, leading to increased susceptibility to epilepsy. Our findings identify endophilin A1 as an iPSD component and provide new insights into the organization and stabilization of inhibitory postsynapses to maintain E/I balance as well as the pathogenesis of epilepsy.
Publisher
Cold Spring Harbor Laboratory