Kinesin-8 motors dimerize by folding their proximal tail domain into a compact helical bundle

Author:

Trofimova Daria,Doubleday Caitlin,Hunter Byron,Arevalo Jesus Serrano,Davison Emma,Wen Eric,Munro Kim,Allingham John S.ORCID

Abstract

AbstractKinesin-8 motor proteins help align and segregate chromosomes during mitosis by regulating the dynamics of kinetochore-attached microtubules and the length and position of the mitotic spindle. Some kinesin-8 isoforms accomplish these roles by operating as multifunctional mechanoenzymes that can traverse microtubules, accumulate at the microtubule plus-ends, and then remove terminal αβ-tubulin subunits. While these activities are mainly powered by the motor domain, whose unique structure-function relationships have been recently reported, the non-motor tail domain contains integral functional elements that have not been structurally illuminated. Using theCandida albicansKip3 protein as a kinesin-8 model system, we present an X-ray crystal structure and hydrodynamic data showing how the motor domain-proximal segment of the tail directs the assembly of two kinesin-8 polypeptides into a homodimer that forms the stalk of this motor. Unlike the extended coiled coil-forming helices of most other motile kinesin stalks, the proximal tail ofCaKip3 folds into a compact 92 Å-long four-helix bundle that dimerizes. The first and third helices provide most of the surface area for the dimer interface, while the other two helices brace the folded stalk structure. The upper and lower lobules of the helical bundle are separated by a flexible hinge that gives the exterior faces of the stalk slightly different shapes when bent. We propose that these unique characteristics provide structural rigidity to the kinesin-8 stalk, as well as sites for transient interactions with kinesin-8-associated proteins or other regulatory regions of the motor.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3