Abstract
AbstractA protein’s energy landscape, all the accessible conformations, their populations, and their dynamics of interconversion, is encoded in its primary sequence. While we have a good understanding of how a protein’s primary sequence encodes its native state, we have a much weaker understanding of how sequence encodes the kinetic barriers such as unfolding and refolding. Here we have looked at two subtiliase homologs from theBacillus subtilis, Intracellular Subtilisin Protease 1 (ISP1) and Subtilisin E (SbtE) that are expected to have very different dynamics. As an intracellular protein, ISP1 has a small pro-domain thought to act simply as a zymogen, whereas the extracellular SbtE has a large pro-domain required for folding. We examined the global and local energetics of the mature proteases and how each pro-domain impacts their landscapes. We find that ISP1’s pro-domain has limited impact on the energy landscape while the mature SbtE is thermodynamically unstable and kinetically trapped. The impact of the pro-domain has opposite effects on the flexibility of the core of the protein. ISP1’s core becomes more flexible while SbtE’s core becomes more rigid. ISP1 contains a conserved amino-acid insertion not present in extracellular subtilisin proteases, which points to a potential source for these differences. These homologs are an extreme example of how changes in the primary sequence can dramatically alter a proteins energy landscape, both stability and dynamics, and highlight the need for large scale, high throughput studies on the relationship between primary sequence and conformational dynamics.
Publisher
Cold Spring Harbor Laboratory