Sparse Coding with a Somato-Dendritic Rule

Author:

Drix DamienORCID,Hafner Verena V.,Schmuker Michael

Abstract

AbstractCortical neurons are silent most of the time. This sparse activity is energy efficient, and the resulting neural code has favourable properties for associative learning. Most neural models of sparse coding use some form of homeostasis to ensure that each neuron fires infrequently. But homeostatic plasticity acting on a fast timescale may not be biologically plausible, and could lead to catastrophic forgetting in embodied agents that learn continuously. We set out to explore whether inhibitory plasticity could play that role instead, regulating both the population sparseness and the average firing rates. We put the idea to the test in a hybrid network where rate-based dendritic compartments integrate the feedforward input, while spiking somas compete through recurrent inhibition. A somato-dendritic learning rule allows somatic inhibition to modulate nonlinear Hebbian learning in the dendrites. Trained on MNIST digits and natural images, the network discovers independent components that form a sparse encoding of the input and support linear decoding. These findings con-firm that intrinsic plasticity is not strictly required for regulating sparseness: inhibitory plasticity can have the same effect, although that mechanism comes with its own stability-plasticity dilemma. Going beyond point neuron models, the network illustrates how a learning rule can make use of dendrites and compartmentalised inputs; it also suggests a functional interpretation for clustered somatic inhibition in cortical neurons.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

1. Hebb DO . The Organization of Behavior: A Neuropsychological Theory. John Wiley & Sons, Inc., 1949. ISBN: 9781410612403.

2. Neural Syntax: Cell Assemblies, Synapsembles, and Readers

3. Why neurons mix: high dimensionality for higher cognition

4. Blind separation of sources, part III: Stability analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3