Deep mutational analysis reveals functional trade-offs in the sequences of EGFR autophosphorylation sites

Author:

Cantor Aaron J.ORCID,Shah Neel H.ORCID,Kuriyan JohnORCID

Abstract

AbstractUpon activation, the epidermal growth factor receptor (EGFR) phosphorylates tyrosine residues in its cytoplasmic tail, which triggers the binding of Src Homology 2 (SH2) and Phosphotyrosine Binding (PTB) domains and initiates downstream signaling. The sequences flanking the tyrosine residues (referred to as phosphosites) must be compatible with phosphorylation by the EGFR kinase domain and the recruitment of adapter proteins, while minimizing phosphorylation that would reduce the fidelity of signal transmission. In order to understand how phosphosite sequences encode these functions within a small set of residues, we carried out high-throughput mutational analysis of three phosphosite sequences in the EGFR tail. We used bacterial surface-display of peptides, coupled with deep sequencing, to monitor phosphorylation efficiency and the binding of the SH2 and PTB domains of the adapter proteins Grb2 and Shc1, respectively. We found that the sequences of phosphosites in the EGFR tail are restricted to a subset of the range of sequences that can be phosphorylated efficiently by EGFR. Although efficient phosphorylation by EGFR can occur with either acidic or large hydrophobic residues at the −1 position with respect to the tyrosine, hydrophobic residues are generally excluded from this position in tail sequences. The mutational data suggest that this restriction results in weaker binding to adapter proteins, but also disfavors phosphorylation by the cytoplasmic tyrosine kinases c-Src and c-Abl. Our results show how EGFR-family phosphosites achieve a trade-off between minimizing off-pathway phosphorylation while maintaining the ability to recruit the diverse complement of effectors required for downstream pathway activation.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

1. Untangling the ErbB signalling network

2. The EGFR Family: Not So Prototypical Receptor Tyrosine Kinases

3. A Structural Perspective on the Regulation of the Epidermal Growth Factor Receptor

4. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor;Mol Cell Biol,1996

5. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor;Cell,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3