Author:
Ju Jingyue,Li Xiaoxu,Kumar Shiv,Jockusch Steffen,Chien Minchen,Tao Chuanjuan,Morozova Irina,Kalachikov Sergey,Kirchdoerfer Robert N.,Russo James J.
Abstract
SummarySARS-CoV-2, a member of the coronavirus family, has caused a global public health emergency.1 Based on our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously reasoned that the FDA-approved heptatitis C drug EPCLUSA (Sofosbuvir/Velpatasvir) should inhibit coronaviruses, including SARS-CoV-2.2 Here, using model polymerase extension experiments, we demonstrate that the activated triphosphate form of Sofosbuvir is incorporated by low-fidelity polymerases and SARS-CoV RNA-dependent RNA polymerase (RdRp), and blocks further incorporation by these polymerases; the activated triphosphate form of Sofosbuvir is not incorporated by a host-like high-fidelity DNA polymerase. Using the same molecular insight, we selected two other anti-viral agents, Alovudine and AZT (an FDA approved HIV/AIDS drug) for evaluation as inhibitors of SARS-CoV RdRp. We demonstrate the ability of two HIV reverse transcriptase inhibitors, 3’-fluoro-3’-deoxythymidine triphosphate and 3’-azido-3’-deoxythymidine triphosphate (the active triphosphate forms of Alovudine and AZT), to be incorporated by SARS-CoV RdRp where they also terminate further polymerase extension. Given the 98% amino acid similarity of the SARS-CoV and SARS-CoV-2 RdRps, we expect these nucleotide analogues would also inhibit the SARS-CoV-2 polymerase. These results offer guidance to further modify these nucleotide analogues to generate more potent broad-spectrum anti-coronavirus agents.
Publisher
Cold Spring Harbor Laboratory
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献