Non-random association of MHC-I alleles in favor of high diversity haplotypes in wild songbirds revealed by computer-assisted MHC haplotype inference using the R package MHCtools

Author:

Roved JacobORCID,Hansson BengtORCID,Stervander MartinORCID,Hasselquist DennisORCID,Westerdahl HelenaORCID

Abstract

AbstractMajor histocompatibility complex (MHC) genes play a central role for pathogen recognition by the adaptive immune system. The MHC genes are often duplicated and tightly linked within a small genomic region. This structural organization suggests that natural selection acts on the combined property of multiple MHC gene copies in segregating haplotypes, rather than on single MHC genes. This may have important implications for analyses of patterns of selection on MHC genes. Here, we present a computer-assisted protocol to infer segregating MHC haplotypes from family data, based on functions in the R package MHCtools. We employed this method to identify 107 unique MHC class I (MHC-I) haplotypes in 116 families of wild great reed warblers (Acrocephalus arundinaceus). In our data, the MHC-I genes were tightly linked in haplotypes and inherited as single units, with only two observed recombination events among 334 offspring. We found substantial variation in the number of different MHC-I alleles per haplotype, and the divergence between alleles in MHC-I haplotypes was significantly higher than between randomly assigned alleles in simulated haplotypes. This suggests that selection has favored non-random associations of divergent MHC-I alleles in haplotypes to increase the range of pathogens that can be recognized by the adaptive immune system. Further studies of selection on MHC haplotypes in natural populations is an interesting avenue for future research. Moreover, inference and analysis of MHC haplotypes offers important insights into the structural organization of MHC genes, and may improve the accuracy of the MHC region in de novo genome assemblies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3