Evolutionary variation in MADS-box dimerization affects floral development and protein stability

Author:

Juarez Maria Jazmin Abraham,Schrager-Lavelle Amanda,Man JarrettORCID,Whipple Clinton,Handakumbura Pubudu,Babbitt Courtney,Bartlett MadelaineORCID

Abstract

AbstractShifting interactions between MADS-box transcription factors may have been critical in the emergence of the flower, and in floral diversification. However, how evolutionary variation in MADS-box interactions affects the development and evolution of floral form remains unknown. Interactions between B-class MADS-box proteins are variable across the grass family. Here, we test the functional consequences of this evolutionary variability using maize as an experimental system. We found that differential B-class dimerization was associated with subtle, quantitative differences in stamen shape. In contrast, differential dimerization resulted in large-scale changes to protein complex composition and downstream gene expression. Differential dimerization also affected B-class complex abundance, independent of RNA levels. Thus, differential dimerization may affect protein stability. This reveals an important consequence for evolutionary variability in MADS-box interactions, adding complexity to the evolution of developmental gene networks. Our results show that floral development is robust to molecular change, even coding change in a master regulator of development. This robustness may contribute to the evolvability of floral form.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3