Antibiotic hypersensitivity signatures identify targets for attack in the Acinetobacter baumannii cell envelope

Author:

Geisinger Edward,Mortman Nadav J.,Dai Yunfei,Cokol Murat,Syal Sapna,Farinha Andrew,Fisher Delaney,Tang Amy,Lazinski David,Wood Stephen,Anthony Jon,van Opijnen Tim,Isberg Ralph R.

Abstract

AbstractAcinetobacter baumannii is an opportunistic pathogen that is a critical, high-priority target for new antibiotic development. Clearing of A. baumannii requires relatively high doses of antibiotics across the spectrum, primarily due to its protective cell envelope. Many of the proteins that support envelope integrity and modulate drug action are uncharacterized, largely because there is an absence of orthologs for several proteins that perform essential envelope-associated processes, impeding progress on this front. To identify targets that can synergize with current antibiotics, we performed an exhaustive analysis of A. baumannii mutants causing hypersensitivity to a multitude of antibiotic treatments. By examining mutants with antibiotic hypersensitivity profiles that parallel mutations in proteins of known function, we show that the function of poorly annotated proteins can be predicted and used to identify candidate missing link proteins in essential A. baumannii processes. Using this strategy, we uncovered multiple uncharacterized proteins with critical roles in cell division or cell elongation, and revealed that a predicted cell wall D,D-endopeptidase has an unappreciated function in lipooligosaccharide synthesis. Moreover, we provide a genetic strategy that uses hypersensitivity signatures to predict drug synergies, allowing the identification of β-lactams that work cooperatively based on the cell wall assembly machineries that they preferentially target. These data reveal multiple pathways critical for envelope growth in A. baumannii that can be targeted in combination strategies for attacking the pathogen.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3