Depression of heart rate in fish at critically high temperatures is due to atrioventricular block

Author:

Haverinen JaakkoORCID,Vornanen MattiORCID

Abstract

ABSTRACTAt critically high temperature, cardiac output in fish collapses due to depression of heart rate (bradycardia). However, the cause of bradycardia remains unresolved. Here we provide a mechanistic explanation for the temperature induced bradycardia. To this end rainbow trout (Oncorhynchus mykiss; acclimated at +12°C) were exposed to acute warming, while cardiac function was followed from electrocardiograms. From +12°C to +25.3°C, electrical excitation between different parts of the heart was coordinated but above +25.3°C atrial and ventricular beating rates became partly dissociated due to 2:1 atrioventricular (AV) block. With further warming atrial rate increased to the peak value of 188 ± 22 bpm at +27°C, while the rate of the ventricle reached the peak value of 124 ± 10 bpm at +25.3°C and thereafter dropped to 111 ± 15 bpm at +27°C. In single ventricular myocytes, warming from +12°C to +25°C attenuated electrical excitability as evidenced by increases in rheobase current and critical depolarization required to trigger action potential. The depression of excitability was caused by temperature induced decrease in input resistance (sarcolemmal K+ leak via the outward IK1 current) of resting myocytes and decrease in inward charge transfer by the Na+ current (INa) of active myocytes. Collectively these findings show that at critically high temperatures AV block causes ventricular bradycardia which is an outcome from the increased excitation threshold of the ventricle due to changes in passive (resting ion leak) and active (inward charge movement) electrical properties of ventricular myocytes. The sequence of events from the level of ion channels to the cardiac function in vivo provides a mechanistic explanation for the depression of cardiac output in fish at critically high temperature.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3