Abstract
AbstractBackgroundTo date, there is a spread of resistance of microorganisms to antibiotics. To solve this problem, the search and development of new drugs with antibacterial activity is necessary. Antimicrobial peptides (AMPs) have pronounced antibacterial activity and may be promising candidates for the role of new drugs. Besides, AMPs can be used to overcome conventional antibiotics resistance due to the possible synergistic effect. In this work, the combined effect of some AMPs (human defensins, HNP-1, hBD-1, hBD-3 and cathelicidin, LL-37) with conventional antibiotics (vancomycin and imipenem) against gram-positive (Enterococcus faecalis; Staphylococcus aureus, methicillin-sensitive, MSSA, and methicillin-resistant, MRSA) and gram-negative (Escherichia coli; Klebsiella pneumoniae; Pseudomonas aeruginosa) bacterial strains was investigated.MethodsBacterial strains were isolated from hospitalized patients of the intensive care unit. Commercially available AMPs (HNP-1, hBD-1, hBD-3, LL-37 by Cloud-Clone Corp., USA) and antibiotics, vancomycin (Sandoz, Slovenia) and imipenem (Merck Sharp and Dohme, USA) were used. Antibiotic resistance phenotypes of isolated bacterial strains were carried out using the disk diffusion method. The standard checkerboard assays were used to study minimum inhibitory concentrations (MIC) of antimicrobials. The combined microbicidal effect of two substances (AMP+conventional antibiotic) was assessed by the fractional inhibitory concentration index (FICI). If FICI ≤ 0,5, then it was considered that two substances showed synergism of action; if 0.5 < FICI < 4 – no interaction; if FICI > 4 – antagonism.ResultsAll studied AMPs had antibacterial activity against the studied strains. hBD-3 showed the lowest MICs compared to other AMPs. MIC of hBD-3 against S. aureus (MSSA and MRSA), E. coli, K. pneumoniae was the same – 0.5 mg/L, and against P. aeruginosa it was 2 mg/L. The combinations HNP-1+vancomycin (against E. faecalis) and hBD-3+imipenem (against E. coli, K. pneumoniae, P. aeruginosa) according to FICI values have shown the synergistic effect. The results of this study can be used to develop novel antibiotics based on AMPs. Also, in some cases, AMPs can help to overcome resistance to conventional antibiotics.
Publisher
Cold Spring Harbor Laboratory