Rottlerin ameliorates DSS-induced colitis by improving intestinal barrier function via activation of the Epac-2/Rap-1 signaling pathway

Author:

Song Xue,Zuo Lugen,Wang Luyao,Zhu Zihan,Tao Jing,Jiang Yifan,Wu Xiaopei,Wang Zhikun,Nian Jing,Xiang Ping,Zhang Xiaofeng,Zhao Hao,Yu Liang,Li Jing,Hu Jianguo

Abstract

ABSTRACTOBJECTIVESRottlerin, a pan PDE inhibitor, has a variety of pharmacological activities, including enhancing barrier function and mediating anti-inflammatory activity by changing the distribution of occludin and ZO-1. Nevertheless, the function of rottlerin on Crohn disease (CD) keep unknown. Our aim of the study is to investigate the role of rottlerin on CD-like colitis and its mechanism.METHODSWild-type mice which were 8-10 weeks old were randomly divided into three treatment groups: (i) the normal feeding, no administration (control) group, (ii) the group administered 3% dextran sodium sulfate (DSS) alone, and (iii) the group administered rottlerin (100 mg/kg) and 3% DSS. In this study, the effect of rottlerin on the function and structure of the intestinal barrier was investigated, and the possible mechanism was discussed. We performed signaling pathway analysis and flow cytometry to identify the detailed mechanisms by which rottlerin (10 μg/mL) treatment inhibits cell growth arrest and the attenuation of TJ proteins in LPS-treated FHs 74 int cells.RESULTSRottlerin treatment significantly ameliorated colitis induced by DSS in WT mice, which was manifested by a decrease in inflammation score, the attenuation of inflammatory factors and the inhibition of destruction on intestinal barrier structure. Rottlerin enhanced the levels of occludin and ZO-1, and improved the function of intestinal barrier, which may have been why rottlerin ameliorated colitis in WT mice. The anti-inflammatory effect of rottlerin may be partly due to the activation of Epac-2/Rap-1 signaling.CONCLUSIONSRottlerin may treat CD in humans via enhancing TJ proteins expression and improving the function of intestinal barrier.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3