Author:
Gualberto A,Patrick R M,Walsh K
Abstract
A factor from avian cells formed complexes with telomeric sequences and other single-stranded probes that contained tracts of guanine residues. Nucleoprotein complexes with telomere probes required two or more of the telomeric repeats that were incapable of Watson-Crick base-pairing. Methylation interference and protection experiments identified guanine N7 residues that were critical for the formation of the nucleoprotein complex and for the formation of a higher-order structure that occurred in the absence of the protein. Substitutions of deoxyinosine (dI) for deoxyguanosine (dG) demonstrated that the exocyclic N2 amino groups in the internal telomeric repeat, but not the terminal repeat, were required for the formation of the chemically protected structure and for protein binding. On the basis of these data we propose that the factor specifically recognizes a hairpin DNA structure that is stabilized by intramolecular G-G base-pairing between the telomere repeats. The positions of the critical guanine N2 and N7 groups indicate a G-G base-pairing configuration, where guanines function as hydrogen bond donors at the internal telomeric repeat and hydrogen bond acceptors at the terminal telomeric repeat.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Reference45 articles.
1. HIV-1 rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA
2. Identification of a telomere-binding activity from yeast.;Proc. Natl. Acad. Sci.,1986
3. Structure and function of telomeres
4. DNA structure equilibria in the human c-myc gene
5. Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA-binding protein.;Mol. Cell. Biol.,1988
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献