Camelina CircRNA Landscape: Implications for Gene Regulation and Fatty Acid Metabolism

Author:

Utley DeleciaORCID,Edwards BrianneORCID,Budnick AsaORCID,Grotewold ErichORCID,Sederoff HeikeORCID

Abstract

ABSTRACTCircular RNAs (circRNAs) are closed-loop RNAs forming a covalent bond between their 3’ and 5’ ends, the backsplice junction (BSJ), rendering them resistant to exonucleases and thus more stable compared to linear RNAs. Identification of circRNAs and distinction from its cognate linear RNA is only possible by sequencing the BSJ that is unique to the circRNA. CircRNAs are involved in regulation of their cognate RNAs by increasing transcription rates, RNA stability and alternative splicing. We have identified circRNAs fromCamelina sativathat are associated with the regulation of germination, light response, and lipid metabolism. We sequenced light-grown and etiolated seedlings after 5 or 7 days post-germination and identified a total of 3,447 circRNAs from 2,763 genes. Most circRNAs originate from a single homeolog of the three subgenomes from allohexaploid camelina and correlates with higher ratios of alternative splicing of their cognate genes. A network analysis shows the interactions of select miRNA:circRNA:mRNAs for regulation of transcript stabilities where circRNA can act as a competing endogenous RNA. Several key lipid metabolism genes can generate circRNA and we confirmed the presence of KASII circRNA as a true circRNA. CircRNA in camelina can be a novel target for breeding and engineering efforts.Core ideasFirst discovery of 3,447 genic and 307 intergenic unique putative circRNAs fromCamelina sativa.We identified circRNAs that were regulated in response to seedling de-etiolation.Most circRNAs originate from only one homeolog of the three subgenomes in this allohexaploid Camelina.Alternative splicing of exon skipping and intron retention positively correlate with circRNA occurrence.Validation of KASII circRNAs as an example of lipid metabolism pathways potentially regulated by circRNA.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3