In-SilicoAnalyses of Molecular Force Sensors for Mechanical Characterization of Biological Systems

Author:

Lopez Diana M.ORCID,Castro Carlos E.ORCID,Sotomayor MarcosORCID

Abstract

ABSTRACTMechanical forces play key roles in biological processes such as cell migration and sensory perception. In recent years molecular force sensors have been developed as tools forin situforce measurements. Here we use all-atom steered molecular dynamics simulations to predict and study the relationship between design parameters and mechanical properties for three types of molecular force sensors commonly used in cellular biological research: two peptide-and one DNA-based. The peptide-based sensors consist of a pair of fluorescent proteins, which can undergo Förster resonance energy transfer (FRET), linked by spider silk (GPGGA)nor synthetic (GGSGGS)ndisordered regions. The DNA-based sensor consists of two fluorophore-labeled strands of DNA that can be unzipped or sheared upon force application with a FRET signal as readout of dissociation. We simulated nine sensors, three of each kind. After equilibration, flexible peptide linkers of three different lengths were stretched by applying forces to their N-and C-terminal Cα atoms in opposite directions. Similarly, we equilibrated a DNA-based sensor and pulled on the phosphate atom of the terminal guanine of one strand and a selected phosphate atom on the other strand in the opposite direction. These simulations were performed at constant velocity (0.01 nm/ns – 10 nm/ns) and constant force (10 pN – 500 pN) for all versions of the sensors. Our results show how the force response of these sensors depends on their length, sequence, configuration and loading rate. Mechanistic insights gained from simulations analyses indicate that interpretation of experimental results should consider the influence of transient formation of secondary structure in peptide-based sensors and of overstretching in DNA-based sensors. These predictions can guide optimal fluorophore choice and facilitate the rational design of new sensors for use in protein, DNA, hybrid systems, and molecular devices.STATEMENT OF SIGNIFICANCEBiomolecular structures involved in various biological processes, including muscle function and sensory perception, generate, convey, and respond to mechanical forces.In-vivoaccurate measurement of these forces is challenging but needed to understand biological function. Here we present a comprehensive computational analysis of three different types of molecular force sensors used to report pico-Newton level forces in biomolecular systems. Our atom-level simulation predictions provide mechanistic insight that can facilitate experimental data interpretation, selection of sensor design parameters, and the development of new force sensors tailored to specific applications and environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3