VISUALIZING GAUSSIAN-CHAIN LIKE STRUCTURAL MODELS OF HUMAN α-SYNUCLEIN IN MONOMERIC PRE-FIBRILLAR STATE: SOLUTION SAXS DATA AND MODELING ANALYSIS

Author:

Dey Madhumita,Gupta Arpit,Badmalia Maulik D.,Ashish ,Sharma Deepak

Abstract

AbstractHere, using small angle X-ray scattering (SAXS) data profile as reference, we attempted to visualize conformational ensemble accessible prefibrillar monomeric state of α-synuclein in solution. In agreement with previous reports, our analysis also confirmed that α-synuclein molecules adopted disordered shape profile under non-associating conditions. Chain-ensemble modeling protocol with dummy residues provided two weighted averaged clusters of semi-extended shapes. Further, Ensemble Optimization Method (EOM) computed mole fractions of semi-extended “twisted” conformations which might co-exist in solution. Since these were only Cαtraces of the models, ALPHAFOLD2 server was used to search for all-atom models. Comparison with experimental data showed all predicted models disagreed equally, as individuals. Finally, we employed molecular dynamics simulations and normal mode analysis-based search coupled with SAXS data to seek better agreeing models. Overall, our analysis concludes that a shifting equilibrium of curved models with low α-helical content best-represents non-associating monomeric α-synuclein.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3