Derivation of aerial insect concentration with a 94GHz FMCW cloud radar

Author:

Lochmann MoritzORCID,Kalesse-Los HeikeORCID,Haest BirgenORCID,Vogl TeresaORCID,van Klink RoelORCID,Addison FreyaORCID,Maahn MaximilianORCID,Schimmel WilliORCID,Wirth ChristianORCID,Quaas JohannesORCID

Abstract

AbstractAerial insects are vital for nature and society. Though methods to observe flying insects have consistently improved in the last decades, insects remain difficult to monitor systematically and consistently over large spatial and temporal scales. Remote sensing with radars has proved to be one of the more effective tools for observation. However, as radars are most sensitive to targets similar in size to the radar wavelength, the detectable sub-group of aerial insects of a certain size range depends on the employed radar. Here, we present a novel method based on data of a zenith-pointing W-band (94 GHz,λ= 0.32 cm) Doppler cloud radar to estimate insect concentration in a vertical profile. Multiple meteorological state-of-the-art algorithms are combined to extract insect signals from the radar data and quantify their abundance from 50 m to 1000 m above the ground. For evaluation, this method is applied to Doppler cloud radar data from a summertime 30 day observation period in central Germany. Results are compared to data from an X-band (9.4 GHz,λ= 3.2 cm) radar in the same region. Aerial insect concentration derived from the W-band radar, which is sensitive to insects in the mm size range, is substantially higher than from the X-band radar, detecting insects in the cm size range. In addition, diel flight timings vary between the different sub-groups of aerial insects observed by the two radar instruments. With its superior sensitivity to smaller insects like aphids, the proposed methodology complements existing entomological radar techniques and contributes to achieving a more complete description of aerial insect activity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3