Abstract
AbstractWe combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress,Saccharomyces cerevisiaeyeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains ofS. cerevisiae, in low and high nutrient environments. The initial nutrient concentration and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.
Publisher
Cold Spring Harbor Laboratory