Modulation of Electrostatic Interactions as a Mechanism of Cryptic Adaptation ofColwelliato High Hydrostatic Pressure

Author:

Makhatadze George I.ORCID

Abstract

AbstractThe role of various interactions in determining the pressure adaptation of the proteome in piezophilic organisms remains to be established. It is clear that the adaptation is not limited to one or two proteins, but has a more general evolution of the characteristics of the entire proteome, the so-called cryptic evolution. Using the synergy between bioinformatics, computer simulations, and some experimental evidence, we probed the physico-chemical mechanisms of cryptic evolution of the proteome of psychrophilic strains of model organism,Colwellia, to adapt to life at various pressures, from the surface of the Arctic ice to the depth of the Mariana Trench. From the bioinformatics analysis of proteomes of several strains of Colwellia, we have identified the modulation of interactions between charged residues as a possible driver of evolutionary adaptation to high hydrostatic pressure. The computational modeling suggests that these interactions have different roles in modulating the function-stability relationship for different protein families. For several classes of proteins, the modulation of interactions between charges evolved to lead to an increase in stability with pressure, while for others, just the opposite is observed. The latter trend appears to benefit enzyme activity by countering structural rigidification due to the high pressure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3