Analysis of the Modulation of RAF Signaling by 14-3-3 Proteins

Author:

Carlip PeterORCID,Stites Edward C.ORCID

Abstract

AbstractThe regulation of cellular biochemical signaling reactions includes the modulation of protein activity through a variety of processes. For example, signaling by the RAF kinases, which are key transmitters of extracellular growth signals downstream from the RAS GTPases, is modulated by dimerization, protein conformational changes, post-translational modifications, and protein-protein interactions. 14-3-3 proteins are known to play an important role in RAF signal regulation, and have the ability to stabilize both inactive (monomeric) and active (dimeric) states of RAF. It is poorly understood how these antagonistic roles ultimately modulate RAF signaling. To investigate, we develop a mathematical model of RAF activation with both roles of 14-3-3, perform algebraic and numeric analyses, and compare with available experimental data. We derive the conditions necessary to explain experimental observations that 14-3-3 overexpression activates RAF, and we show that strong binding of 14-3-3 to Raf dimers alone is not generally sufficient to explain this observation. Our integrated analysis also suggests that RAF–14-3-3 binding is relatively weak for the reasonable range of parameter values, and suggests the Raf dimer–14-3-3 interactions are stabilized primarily by avidity. Lastly we find that in the limit of paired weak/avidity driven interactions between RAF and 14-3-3, the paired binding interactions may be reasonably approximated with a strong, single, equilibrium reaction. Overall, our work presents a mathematical model that can serve as a foundational piece for future, extended, studies of signaling reactions involving regulated RAF kinase activity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3