A Monte Carlo simulation framework for histology-informed diffusion MRI cancer characterisation and microstructural parameter estimation

Author:

Grigoriou Athanasios,Macarro Carlos,Palombo Marco,Voronova Anna,Bernatowicz Kinga,Barba Ignasi,Escriche Alba,Greco Emanuela,Abad María,Simonetti Sara,Serna Garazi,Mast Richard,Merino Xavier,Roson Núria,Escobar Manuel,Vieito Maria,Nuciforo Paolo,Toledo Rodrigo,Garralda Elena,Sala-Llonch Roser,Fieremans Els,Novikov Dmitry S.,Perez-Lopez Raquel,Grussu FrancescoORCID

Abstract

AbstractComputer simulations within substrates that mimic the complexity of biological tissues are key to the development of biophysical diffusion Magnetic Resonance Imaging (dMRI) models. Realistic simulations have enabled, for example, the non-invasive estimation of fine neuronal sub-structures, which is playing an increasingly key role in neurology and neuro-science. However, biologically-realistic, simulation-informed dMRI techniques are also needed in other applications, as for example in oncological imaging of body tumours. This article aims to fill this gap by presenting a Monte Carlo (MC) framework tailored for histology-informed simulations in body imaging applications. The framework, which combines free software with custom-written routines, is demonstrated on substrates reconstructed from hematoxylin-eosin (HE) stains of human liver biopsies, including non-cancerous liver and primary/metastatic liver cancer tissues. The article has four main contributions. Firstly, it provides practical guidelines on how to conduct realistic MC diffusion simulations informed by HE histology. Secondly, it reports reference values on cell size (CS), cell density and on other cellular properties in non-cancerous and cancerous liver — information not easily found in the literature, yet essential to inform the design of innovative dMRI techniques. Thirdly, it presents a detailed characterisation of synthetic signals generated for clinically feasible dMRI protocols, shedding light onto patterns of intra-/extra-cellular (IC/EC) water diffusion in liver. Finally, it illustrates the utility of the framework, by devising a strategy where synthetic signals inform the estimation of unexplored microstructural properties, as the EC intrinsic diffusivity and CS distribution skewness. The strategy is demonstrated on actual dMRI scans, acquired onex vivomouse tissue and in cancer patientsin vivo.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3