A flexible framework for minimal biomarker signature discovery from clinical omics studies without library size normalisation

Author:

Rawlinson DanielORCID,Zhou ChenxiORCID,Lê Cao Kim-AnhORCID,Coin Lachlan J.M.ORCID

Abstract

AbstractApplication of transcriptomics, proteomics and metabolomics technologies to clinical cohorts has uncovered a variety of signatures for predicting disease. Many of these signatures require the full ‘omics data for evaluation on unseen samples, either explicitly or implicitly through library size normalisation. Translation to low-cost point-of-care tests requires development of signatures which measure as few analytes as possible without relying on direct measurement of library size.To achieve this, we have developed a feature selection method (Forward Selection-Partial Least Squares) which generates minimal disease signatures from high-dimensional omics datasets with applicability to continuous, binary or multi-class outcomes. Through extensive benchmarking, we show that FS-PLS has comparable performance to commonly used signature discovery methods while delivering signatures which are an order of magnitude smaller. We show that FS-PLS can be used to select features predictive of library size, and that these features can be used to normalize unseen samples, meaning that the features in the complete model can be measured in isolation for making new predictions.By enabling discovery of small, high-performance signatures, FS-PLS addresses an important impediment for the further development of precision medical care.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3