BATF2 is a regulator of interferon-γ signaling in astrocytes during neuroinflammation

Author:

Tinkey Rachel A.,Smith Brandon C.,Habean Maria L.,Williams Jessica L.ORCID

Abstract

SummaryAstrocytic interferon (IFN)γ signaling is associated with a reduction in neuroinflammation. We have previously shown that the benefits of astrocytic IFNγ arise from a variety of mechanisms; however, downstream effectors responsible for regulating this protection are unknown. We address this by identifying a specific transcription factor that may play a key role in modulating the consequences of IFNγ signaling. RNA-sequencing of primary human astrocytes treated with IFNγ revealed basic leucine zipper ATF-like transcription factor (BATF)2 as a highly expressed interferon-specific gene. Primarily studied in the periphery, BATF2 has been shown to exert both inflammatory and protective functions; however, its function in the central nervous system (CNS) is unknown. Here, we demonstrate that human spinal cord astrocytes upregulate BATF2 transcript and protein in an IFNγ-specific manner. Additionally, we found that BATF2 prevents overexpression of interferon regulatory factor (IRF)1 and IRF1 targets such as Caspase-1, which are known downstream pro-inflammatory mediators. We also show thatBatf2−/−mice exhibit exacerbated clinical disease severity in a murine model of CNS autoimmunity, characterized by an increase in both CNS immune cell infiltration and demyelination.Batf2−/−mice also exhibit increased astrocyte-specific expression of IRF1 and Caspase-1, suggesting an amplified interferon responsein vivo. Further, we demonstrate that BATF2 is expressed primarily in astrocytes in MS lesions and that this expression is co-localized with IRF1. Collectively, our results further support a protective role for IFNγ and implicate BATF2 as a key suppressor of overactive immune signaling in astrocytes during neuroinflammation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3