Predicting Early-Onset Colorectal Cancer in Individuals Below Screening Age Using Machine Learning and Real-World Data

Author:

Sun Chengkun,Mobley Erin M.,Quillen Michael B.,Parker Max,Daly Meghan,Wang Rui,Visintin Isabela,Awad Ziad,Fishe Jennifer,Parker Alexander,George Thomas J.,Bian JiangORCID,Xu Jie

Abstract

AbstractBackgroundColorectal cancer (CRC) is now the leading cause of cancer-related deaths among young Americans. Our study aims to predict early-onset CRC (EOCRC) using machine learning (ML) and structured electronic health record (EHR) data for individuals under the screening age of 45.MethodsWe identified a cohort of patients under 45 from the OneFlorida+ Clinical Research Consortium. Given the distinct pathology of colon cancer (CC) and rectal cancer (RC), we created separate prediction models for each cancer type with various ML algorithms. We assessed multiple prediction time windows (0, 1, 3, and 5 years) and ensured robustness through propensity score matching (PSM) to account for confounding variables. Model performance was assessed using established metrics. Additionally, we employed the Shapley Additive exPlanations (SHAP) to identify risk factors for EOCRC.ResultsOur study yielded results, with Area Under the Curve (AUC) scores of 0.811, 0.748, 0.689, and 0.686 for CC prediction, and 0.829, 0.771, 0.727, and 0.721 for RC prediction at 0, 1, 3, and 5 years, respectively. Notably, predictors included immune and digestive system disorders, along with secondary cancers and underweight, prevalent in both CC and RC groups. Blood diseases emerged as prominent indicators of CC.ConclusionThis study highlights the potential of ML techniques in leveraging EHR data to predict EOCRC, offering valuable insights for potential early diagnosis in patients who are below the recommended screening age.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3