Abstract
ABSTRACTTargeting of current therapies to treat or prevent loss of pancreatic islet β-cells in Type 1 Diabetes (T1D) may provide improved efficacy and reduce off target effects. Current efforts to target the β-cell are limited by a lack of β-cell specific targets and the inability to test multiple targeting moieties with the same delivery vehicle. Here we fabricate a novel tailorable polycaprolactone nanocapsule (NC) where multiple different targeting peptides can be interchangeably attached for β-cell specific delivery. Incorporation of a cationic surfactant in the NC shell allows for the attachment of Exendin-4 and an antibody for ectonucleoside triphosphate diphosphohydrolase 3 (ENTPD3) for β-cell specific targeting. The average NC size ranges from 250-300nm with a polydispersity index under 0.2. The NCs are non-toxic, stable in media culture, and can be lyophilized and reconstituted. NCs coated with targeting peptide were taken up by human cadaveric islet β-cells and human stem cell-derived β-like cells (sBC)in vitrowith a high level of specificity. Furthermore, NCs successfully delivered both hydrophobic and hydrophilic cargo to human β-cells. Finally, Exendin-4 coated NCs were stable and targeted the mouse pancreatic islet β-cellin vivo. Our unique NC design allows for the interchangeable coating of targeting peptides for future screening of targets with improved cell specificity. The ability to target and deliver thera-peutics to human pancreatic β-cells opens avenues for improved therapies and treatments to help the delay onset, prevent, or reverse T1D.
Publisher
Cold Spring Harbor Laboratory