Sensitive detection of synthetic response to cancer immunotherapy driven by gene paralog pairs

Author:

Dong Chuanpeng,Zhang Feifei,He Emily,Ren Ping,Verma Nipun,Zhu Xinxin,Feng Di,Zhao HongyuORCID,Chen SidiORCID

Abstract

AbstractEmerging immunotherapies such as immune checkpoint blockade (ICB) and chimeric antigen receptor T-cell (CAR-T) therapy have revolutionized cancer treatment and have improved the survival of patients with multiple cancer types. Despite this success many patients are unresponsive to these treatments or relapse following treatment. CRISPR activation and knockout (KO) screens have been used to identify novel single gene targets that can enhance effector T cell function and promote immune cell targeting and eradication of tumors. However, cancer cells often employ multiple genes to promote an immunosuppressive pathway and thus modulating individual genes often has a limited effect. Paralogs are genes that originate from common ancestors and retain similar functions. They often have complex effects on a particular phenotype depending on factors like gene family similarity, each individual gene’s expression and the physiological or pathological context. Some paralogs exhibit synthetic lethal interactions in cancer cell survival; however, a thorough investigation of paralog pairs that could enhance the efficacy of cancer immunotherapy is lacking. Here we introduce a sensitive computational approach that uses sgRNA sets enrichment analysis to identify cancer-intrinsic paralog pairs which have the potential to synergistically enhance T cell-mediated tumor destruction. We have further developed an ensemble learning model that uses an XGBoost classifier and incorporates features such as gene characteristics, sequence and structural similarities, protein-protein interaction (PPI) networks, and gene coevolution data to predict paralog pairs that are likely to enhance immunotherapy efficacy. We experimentally validated the functional significance of these predicted paralog pairs using double knockout (DKO) of identified paralog gene pairs as compared to single gene knockouts (SKOs). These data and analyses collectively provide a sensitive approach to identify previously undetected paralog pairs that can enhance cancer immunotherapy even when individual genes within the pair has a limited effect.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3