Radiomic-Based Approaches in the Multi-metastatic Setting: A Quantitative Review

Author:

Geady Caryn,Patel Hemangini,Peoples Jacob,Simpson Amber,Haibe-Kains Benjamin

Abstract

AbstractBackgroundRadiomics traditionally focuses on analyzing a single lesion within a patient to extract tumor characteristics, yet this process may overlook inter-lesion heterogeneity, particularly in the multi-metastatic setting. There is currently no established method for combining radiomic features in such settings, leading to diverse approaches with varying strengths and limitations. Our quantitative review aims to illuminate these methodologies, assess their replicability, and guide future research toward establishing best practices, offering insights into the challenges of multi-lesion radiomic analysis across diverse datasets.MethodsWe conducted a comprehensive literature search to identify methods for integrating data from multiple lesions in radiomic analyses. We replicated these methods using either the author’s code or by reconstructing them based on the information provided in the papers. Subsequently, we applied these identified methods to three distinct datasets, each depicting a different metastatic scenario.ResultsWe compared ten mathematical methods for combining radiomic features across three distinct datasets, encompassing a total of 16,850 lesions in 3,930 patients. Performance of these methods was evaluated using the Cox proportional hazards model and benchmarked against univariable analysis of total tumor volume. We observed variable performance in methods across datasets. However, no single method consistently outperformed others across all datasets. Notably, while some methods surpassed total tumor volume analysis in certain datasets, others did not. Averaging methods showed higher median performance in patients with colorectal liver metastases, and in soft tissue sarcoma, concatenation of radiomic features from different lesions exhibited the highest median performance among tested methods.ConclusionsRadiomic features can be effectively selected or combined to estimate patient-level outcomes in multi-metastatic patients, though the approach varies by metastatic setting. Our study fills a critical gap in radiomics research by examining the challenges of radiomic-based analysis in this setting. Through a comprehensive review and rigorous testing of different methods across diverse datasets representing unique metastatic scenarios, we provide valuable insights into effective radiomic analysis strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3