Majority-LCL: Towards Malaria Cell Detection using Label Contrastive Learning and Majority voting Ensembling

Author:

Kundu Shreyan,Talukdar Rahul,Roy Nirban,Das Semanti,Basu Soumili,Mukhopadhyay Souradeep

Abstract

AbstractThe plasmodium group single-celled parasite that causes malaria is contagious. A female Anopheles mosquito with the infection is most frequently the one spreading it. Over 40% of the world’s population is at danger; 219 million illnesses and around 435,000 deaths were recorded in 2017 alone. Even with many sophisticated evaluation tools, microscopists in resource-constrained settings still struggle to improve the accuracy of diagnosis. Cell picture classification using deep learning avoids making incorrect diagnosis conclusions. This research aims to increase diagnostic accuracy by classifying malarial-infected cells using majority voting ensembling in conjunction with triplet loss-aided label contrastive learning. The outcomes of the experiment demonstrate how well our method works with microscopic cell images in terms of accuracy, precision, recall, and other parameters.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3