Using behavioral biomarkers to redefine epochs of spontaneous recovery following spinal cord injury

Author:

Eisdorfer Jaclyn TORCID,Thackray JoshORCID,Theis Thomas,Vivinetto AnaORCID,Ricci Matthew T,Lin SherryORCID,Oputa Olisemeka,Martinez Alana MORCID,Nacht Hannah D,Tschang MonicaORCID,Mahmood MalaikaORCID,Tucker AshleyORCID,Bohic ManonORCID,Pusuloori Shailee,Zmoyro Lance,Popovich PhillipORCID,Ferguson Adam R.ORCID,McTigue DanaORCID,Tysseling Vicki MORCID,Dulin JenniferORCID,Hollis EdmundORCID,Datta Sandeep RobertORCID,Abraira Victoria EORCID,

Abstract

ABSTRACTUncovering the intricacies of the recovery trajectory following spinal cord injury (SCI) has remained a critical exploration for researchers and clinicians, fostering the need of innovative approaches to offer insight into the underlying dynamics of this complex phenomenon. Existing methods, such as the Basso Mouse Scale (BMS) and kinematic analyses, have provided valuable insights, yet limitations in their ability to comprehensively capture behavioral nuances call for more sophisticated approaches. This study addresses segregating the intricate trajectory of recovery following SCI into discrete epochs through the use of behavioral biomarkers. Leveraging a machine learning-driven video analysis technique known as Motion Sequencing (MoSeq), we identified distinct behavioral modules, elucidating shared patterns across diverse injury severities. Our analysis highlights the correlation between these behavioral biomarkers and established recovery metrics, such as BMS criteria and histological markers. Importantly, behavioral biomarkers enabled for deeper understanding of mouse behavior, capturing nuanced features often overlooked by traditional measures. These findings underscore the potential of behavioral biomarkers in characterizing discrete recovery epochs and signatures at the transition from one phase to the next.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3