Interactions between ploidy and resource availability shape clonal interference at initiation and recurrence of glioblastoma

Author:

Nowicka Zuzanna,Rentzeperis Frederika,Beck Richard,Tagal Vural,Pinto Ana Forero,Scanu Elisa,Veith ThomasORCID,Cole Jackson,Ilter Didem,Viqueira William Dominguez,Teer Jamie K.,Maksin Konstantin,Pasetto Stefano,Abdalah Mahmoud A.,Fiandaca Giada,Prabhakaran SandhyaORCID,Schultz Andrew,Ojwang Maureiq,Barnholtz-Sloan Jill S.,Farinhas Joaquim M.,Gomes Ana P.,Katira Parag,Andor Noemi

Abstract

AbstractGlioblastoma (GBM) is the most aggressive form of primary brain tumor. Complete surgical resection of GBM is almost impossible due to the infiltrative nature of the cancer. While no evidence for recent selection events have been found after diagnosis, the selective forces that govern gliomagenesis are strong, shaping the tumor’s cell composition during the initial progression to malignancy with late consequences for invasiveness and therapy response. We present a mathematical model that simulates the growth and invasion of a glioma, given its ploidy level and the nature of its brain tissue micro-environment (TME), and use it to make inferences about GBM initiation and response to standard-of-care treatment. We approximate the spatial distribution of resource access in the TME through integration of in-silico modelling, multi-omics data and image analysis of primary and recurrent GBM. In the pre-malignant setting, our in-silico results suggest that low ploidy cancer cells are more resistant to starvation-induced cell death. In the malignant setting, between first and second surgery, simulated tumors with different ploidy compositions progressed at different rates. Whether higher ploidy predicted fast recurrence, however, depended on the TME. Historical data supports this dependence on TME resources, as shown by a significant correlation between the median glucose uptake rates in human tissues and the median ploidy of cancer types that arise in the respective tissues (Spearman r = -0.70; P = 0.026). Taken together our findings suggest that availability of metabolic substrates in the TME drives different cell fate decisions for cancer cells with different ploidy and shapes GBM disease initiation and relapse characteristics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3