Abstract
AbstractPredicting the change of protein tertiary structure caused by singlesite mutations is important for studying protein structure, function, and interaction. Even though computational protein structure prediction methods such as AlphaFold can predict the overall tertiary structures of most proteins rather accurately, they are not sensitive enough to accurately predict the structural changes induced by single-site amino acid mutations on proteins. Specialized mutation prediction methods mostly focus on predicting the overall stability or function changes caused by mutations without attempting to predict the exact mutation-induced structural changes, limiting their use in protein mutation study. In this work, we develop the first deep learning method based on equivariant graph neural networks (EGNN) to directly predict the tertiary structural changes caused by single-site mutations and the tertiary structure of any protein mutant from the structure of its wild-type counterpart. The results show that it performs substantially better in predicting the tertiary structures of protein mutants than the widely used protein structure prediction method AlphaFold.
Publisher
Cold Spring Harbor Laboratory