Methanotroph phenotypic heterogeneity in a methane-oxygen counter gradient

Author:

Beals Delaney G.ORCID,Puri Aaron W.ORCID

Abstract

ABSTRACTConnecting genes to phenotypic traits in bacteria is often challenging because of a lack of environmental context in laboratory settings. Laboratory-based model ecosystems offer a means to better account for environmental conditions compared to standard planktonic cultures, and can help link genotypes and phenotypes. Here, we present a simple, cost-effective, laboratory-based model ecosystem to study aerobic methane-oxidizing bacteria (methanotrophs) within the methane-oxygen counter gradient typically found in the natural environment of these organisms. Culturing the methanotrophMethylomonassp. strain LW13 in this system resulted in formation of a distinct horizontal band at the intersection of the counter gradient, which we discovered was not due to increased numbers of viable bacteria at this location but instead to an increased amount of polysaccharides. We also discovered that different methanotrophic taxa form polysaccharide bands with distinct locations and morphologies when grown in the methane-oxygen counter gradient. By comparing transcriptomic data from LW13 growing within and surrounding this band, we identified genes upregulated within the band and validated their involvement in growth and band formation within the model ecosystem using knockout strains. Notably, deletion of these genes did not negatively affect growth using standard laboratory conditions. This work highlights the use of a laboratory-based model ecosystem that more closely mimics the natural environment to uncover methanotroph phenotypes missing from standard planktonic cultures, and to link these phenotypes with their genetic determinants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3