ArtiDock: fast and accurate machine learning approach to protein-ligand docking based on multimodal data augmentation

Author:

Voitsitskyi TarasORCID,Yesylevskyy SemenORCID,Bdzhola VolodymyrORCID,Stratiichuk RomanORCID,Koleiev Ihor,Ostrovsky Zakhar,Vozniak Volodymyr,Khropachov Ivan,Henitsoi Pavlo,Popryho Leonid,Zhytar Roman,Nafiiev AlanORCID,Starosyla SerhiiORCID

Abstract

We present ArtiDock - the deep learning technique for predicting ligand poses in the protein binding pockets (aka “AI docking”), which is based on augmenting inherently limited training data with algorithmically generated artificial binding pockets and the ensembles of representative conformations of the ligand-protein complexes obtained from MD simulations. Performance of ArtiDock is compared systematically with other AI docking techniques and conventional docking programs on the PoseBusters dataset, which is dedicated for benchmarking the AI pose prediction algorithms. ArtiDock outperforms the best AI docking techniques and the major conventional docking programs, being at least an order of magnitude faster while providing superior accuracy in terms of RMSD and additional ligand pose correctness metrics. The influence of data augmentation on the model performance is evaluated and the perspectives of further development are discussed.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3