CONSORT-TM: Text classification models for assessing the completeness of randomized controlled trial publications

Author:

Jiang Lan,Lan Mengfei,Menke Joe D.,Vorland Colby J,Kilicoglu HalilORCID

Abstract

ABSTRACTObjectiveTo develop text classification models for determining whether the checklist items in the CONSORT reporting guidelines are reported in randomized controlled trial publications.Materials and MethodsUsing a corpus annotated at the sentence level with 37 fine-grained CONSORT items, we trained several sentence classification models (PubMedBERT fine-tuning, BioGPT fine-tuning, and in-context learning with GPT-4) and compared their performance. To address the problem of small training dataset, we used several data augmentation methods (EDA, UMLS-EDA, text generation and rephrasing with GPT-4) and assessed their impact on the fine-tuned PubMedBERT model. We also fine-tuned PubMedBERT models limited to checklist items associated with specific sections (e.g., Methods) to evaluate whether such models could improve performance compared to the single full model. We performed 5-fold cross-validation and report precision, recall, F1 score, and area under curve (AUC).ResultsFine-tuned PubMedBERT model that takes as input the sentence and the surrounding sentence representations and uses section headers yielded the best overall performance (0.71 micro-F1, 0.64 macro-F1). Data augmentation had limited positive effect, UMLS-EDA yielding slightly better results than data augmentation using GPT-4. BioGPT fine-tuning and GPT-4 in-context learning exhibited suboptimal results. Methods-specific model yielded higher performance for methodology items, other section-specific models did not have significant impact.ConclusionMost CONSORT checklist items can be recognized reasonably well with the fine-tuned PubMedBERT model but there is room for improvement. Improved models can underpin the journal editorial workflows and CONSORT adherence checks and can help authors in improving the reporting quality and completeness of their manuscripts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3