Genotype-specific differences in infertile men due to loss-of-function variants inM1APorZZSgenes

Author:

Rotte Nadja,Dunleavy Jessica E.M.ORCID,Runkel Michelle D.,Fietz Daniela,Pilatz Adrian,Kuss Johanna,Dicke Ann-Kristin,Winge Sofia B.,Persio Sara Di,Ruckert Christian,Nordhoff Verena,Schuppe Hans-Christian,Almstrup Kristian,Kliesch Sabine,Neuhaus Nina,Stallmeyer Birgit,O’Bryan Moira K.ORCID,Tüttelmann FrankORCID,Friedrich CorinnaORCID

Abstract

AbstractMale infertility and meiotic arrest have been linked toM1AP, the gene encoding meiosis I associated protein. In mice, M1AP interacts with the ZZS proteins SHOC1, TEX11, and SPO16, which promote DNA class I crossover formation during meiosis. To determine whether M1AP and ZZS proteins are involved in human male infertility by disrupting class I crossover formation, we screened for biallelic or hemizygous loss-of-function (LoF) variants in the encoding human genes to select men with a presumed protein deficiency; we compiled N=10 men forM1AP, N=4 forSHOC1, N=9 forTEX11,and the first homozygous LoF variant inSPO16in an infertile man. After in-depth characterisation of the testicular phenotype of these men, we identified gene-specific meiotic impairments: men with SHOC1, TEX11, or SPO16 deficiency shared an early meiotic arrest lacking haploid germ cells. All men with LoF variants inM1APexhibited a predominant metaphase I arrest with rare haploid round spermatids, and six men even produced sporadic elongated spermatids. These differences were explained by different recombination failures: abrogated SHOC1, TEX11, or SPO16 led to incorrect synapsis of homologous chromosomes and unrepaired DNA double-strand breaks (DSB). On the contrary, abolished M1AP did not affect synapsis and DSB repair but led to a reduced number of class I crossover events. Notably, medically assisted reproduction resulted in the birth of a healthy child, offering the possibility of fatherhood to men with LoF variants inM1AP. Our study establishes M1AP as an important, but not essential, functional enhancer in the network of ZZS-mediated meiotic recombination.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3