Buzz-world: Global patterns and drivers of buzzing bees and poricidal plants

Author:

Russell Avery L.ORCID,Buchmann Stephen L.,Ascher John S.,Wang Zhiheng,Kriebel Ricardo,Jolles Diana D.,Orr Michael C.ORCID,Hughes Alice C.

Abstract

SUMMARYForaging behavior frequently plays a major role in driving the geographic distribution of animals. Buzzing to extract protein-rich pollen from flowers is a key foraging behavior used by bee species across at least 83 genera (these genera comprise ∼58% of all bee species). Although buzzing is widely recognized to affect the ecology and evolution of bees and flowering plants (e.g., buzz-pollinated flowers), global patterns and drivers of buzzing bee biogeography remain unexplored. Here, we investigate the global species distribution patterns within each bee family and how patterns and drivers differ with respect to buzzing bee species. We found that both distributional patterns and drivers of richness typically differed for buzzing species compared to hotspots for all bee species and when grouped by family. A major predictor of the distribution, but not species richness overall for buzzing members of four of the five major bee families included in analyses (Andrenidae, Halictidae, Colletidae and to a lesser extent, Apidae) was the richness of poricidal flowering plant species, which depend on buzzing bees for pollination. As poricidal plant richness was highest in areas with low wind and high aridity, we discuss how global hotspots of buzzing bee biodiversity are likely driven by both biogeographic factors and plant host availability. Whilst we explored global patterns with State-level data, higher resolution work is needed to explore local level drivers of patterns, but from a global perspective, buzz-pollinated plants clearly play a greater role in the ecology and evolution of buzzing bees than previously predicted.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3