msqrob2TMT: robust linear mixed models for inferring differential abundant proteins in labelled experiments with arbitrarily complex design

Author:

Vandenbulcke Stijn,Vanderaa ChristopheORCID,Crook OliverORCID,Martens LennartORCID,Clement LievenORCID

Abstract

AbstractLabelling strategies in mass spectrometry (MS)-based proteomics enable increased sample throughput by acquiring multiplexed samples in a single run. However, contemporary designs often require the acquisition of multiple runs, leading to a complex correlation structure. Addressing this correlation is key for correct statistical inference and reliable biomarker discovery. Therefore, we present msqrob2TMT, a set of mixed model-based workflows tailored toward differential abundance analysis for labelled MS-based proteomics data. Thanks to its increased flexibility, msqrob2TMT can model both sample-specific and feature-specific (e.g. peptide or protein) covariates, which unlocks the inference to experiments with arbitrarily complex designs as well as to correct explicitly for feature-specific properties. We benchmark our novel workflows against the state-of-the-art tools MSstatsTMT and DeqMS in a spike-in study. We show that our workflows are modular, more flexible and have improved performance by adopting robust ridge regression. We also found that reference channel normalization and imputation can have a deleterious impact on the statistical outcome. Finally, we demonstrate the significance of msqrob2TMT on a real-life mice study, showcasing the importance of effectively accounting for the hierarchical correlation structure in the data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3