High-resolution scRNA-seq reveals genomic determinants of antigen expression hierarchy in African Trypanosomes

Author:

McWilliam Kirsty R.ORCID,Keneskhanova ZhibekORCID,Cosentino Raúl O.ORCID,Dobrynin Atai,Smith Jaclyn E.,Subota InesORCID,Mugnier Monica R.ORCID,Colomé-Tatché MariaORCID,Siegel T. NicolaiORCID

Abstract

AbstractAntigenic variation is an immune evasion strategy used by many different pathogens. It involves the periodic, non-random switch in the expression of different antigens throughout an infection. How the observed hierarchy in antigen expression is achieved has remained a mystery. A key challenge in uncovering this process has been the inability to track transcriptome changes and potential genomic rearrangements in individual cells during a switch event. Here, we report the establishment of a highly sensitive single-cell RNA-seq (scRNA-seq) approach for the model protozoan parasiteTrypanosoma brucei. This approach has revealed genomic rearrangements that occur in individual cells during a switch event. Our data show that following a double-strand break (DSB) in the transcribed antigen-coding gene – an important trigger for antigen switching – the type of repair mechanism and the resultant antigen expression depend on the availability of a homologous repair template in the genome. When such a template was available, repair proceeded through segmental gene conversion, creating new, mosaic antigen-coding genes. Conversely, in the absence of a suitable template, a telomere-adjacent antigen-coding gene from a different part of the genome was activated by break-induced replication. Our results reveal the critical role of available repair sequence in the antigen selection mechanism. Additionally, our study demonstrates the power of highly sensitive scRNA-seq methods in detecting genomic rearrangements that drive transcriptional changes at the single-cell level.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3